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A 2�2 game model implemented by a coevolution mechanism of both networks and strategy, inspired by
the work of Zimmermann and Eguiluz �Phys. Rev. E 72, 056118 �2005�� is established. Network adaptation is
the manner in which an existing link between two agents is destroyed and how a new one is established to
replace it. The strategy is defined as whether an agent offers cooperation �C� or defection �D�. Both the
networks and strategy are synchronously renovated in a simulation time step. A series of numerical experi-
ments, considering various 2�2 game structures, reveals that the proposed coevolution mechanism can solve
dilemmas in several game classes. The effect of solving a dilemma means mutual-cooperation reciprocity �R
reciprocity�, which is brought about by emerging several cooperative hub agents who have plenty of links. This
effect can be primarily observed in game classes of the prisoner’s dilemma and stag hunt. The coevolution
mechanism, however, seems counterproductive for game classes of leader and hero, where the alternating
reciprocity �ST reciprocity� is meaningful.
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I. INTRODUCTION

Sustainable cooperation in dilemma situations is one of
the most interesting themes in various fields, such as biology,
sociobiology �1�, and other social sciences. An arising coop-
eration and its maintenance might be the most important key
to understanding the social behavior of animals, such as mat-
ing competition and mutual altruism.

The reason for cooperation emergence in overcoming a
dilemma has been primarily explained by two theories: kin
selection �2� and reciprocal altruism �3�. Axelrod �4� insisted
that the reason tit for tat �TFT� is effective in an iterated
prisoner’s dilemma �IPD� could be explained by direct reci-
procity, where one could expect his opponent’s cooperation
�C� by offering his own C, instead of defection �D�. Other
options such as the not-participating option �“walk-away” or
“lonely” strategy by, e.g., �5�� and discriminating option by
means of tag �e.g., �6�� or reputation �7� rely on a mecha-
nism, in which limiting opponents �depressing anonymity, in
other words� leads to a rise in reciprocity. This can transform
the game structure of “an egocentric action is the best way to
maximize his own payoff” to a situation where the altruism
is rather optimum �the altruism is more beneficial to himself
in the long run, in other words�.

The so-called spatial structures and social networking
�classified as “network reciprocity” �8�� rely on the same
principle. Hundreds of previous studies have examined “net-
work reciprocity” �e.g., �9–15��. Network reciprocity can
make altruism emerge, even though requiring that agents use
only the simplest strategy—either C or D. Thus, network
reciprocity may explain why a number of animal species,
unsophisticated in terms of information processing, have
evolved cooperative social systems. When we see the term
“network,” it encompasses various topologies from a regular
or random graph, to a small-word �15� or a scale-free net-
work �16�. Most of the earlier studies are based on a frame-

work where agents are initially allocated in a fixed network.
They play 2�2 games with opponents connected by net-
work links. After gaming, they copy a strategy �defined by
offering either C or D� from one of their neighbors, based on
a certain rule. The copying process is either synchronous or
asynchronous. In this series of procedures, adaptation is only
considered in the process of strategy brush-up.

Hu et al. �17� and Tang et al. �18� report that a coopera-
tive social structure, having a power-law payoff distribution,
can emerge when both strategy adaptation and the growth of
a scale-free network is taken account into the process of
gaming either PD or chicken. This can be said to be one
mechanism of coevolution of strategy and networking. Their
model, however, assumes a particular process, where the net-
work is growing �i.e., the number of agents is increasing�,
since the Barabasi-Albert algorithm �16� was involved in the
process of dealing with a scale-free network.

Zimmermann and Eguiluz �19� showed the phenomenal
idea of a perfect coevolution system in a networking game.
The model they established can consider simultaneous co-
evolution of networks and strategy. Applying this model to
several PDs, they observed a stable cooperation phase when
a cooperative hub agent �they called a C leader� emerged,
bringing about C chains. They argued that the detailed dy-
namics of an emerging cooperative phase could be described
in terms of how the C chains are growing �or being broken�.
The fact of a C leader emerging as a hub agent implies that
the emerging network in their model is similar to a scale-free
network.

Another significant study, by Pacheco et al. �20,21�, deals
with both networking and strategy adaptations. They adopt
two parameters: the time scale for strategy updating and one
for network updating. When the former is smaller than the
latter, this would be an evolutionary game in a fixed network.
Assuming a complete graph as an initial network, this case
can be analytically dealt with, using the replicator dynamics
of a 2�2 game. They are analytically formulated for when
the network updating scale is much less than that of strategy,
which can be also evaluated by other replicator dynamics,
using the a 2�2 game matrix, revised from the original.*tanimoto@cm.kyushu-u.ac.jp

PHYSICAL REVIEW E 76, 021126 �2007�

1539-3755/2007/76�2�/021126�7� ©2007 The American Physical Society021126-1

http://dx.doi.org/10.1103/PhysRevE.76.021126


Their findings are not directly applicable to the case when
both time scales seem to be close, which must be solved by
a numerical approach, such as that used by Zimmermann and
Eguiluz. In addition, the assumption of each agent having a
complete graph as an initial state seems rather particular than
usual, since the agent in a general social system has some
countable links, determined by his finite information-
processing capacity.

There is another recent study to be noted by Vainstein et
al. �22�. They focus “mobility” in the context of a PD game
on a spatially distributed population of memoryless, uncon-
ditional strategies �cooperators and defectors�. The mobility,
they say, can be interpreted as a network adaptation contain-
ing both severing and connecting a link. In other words, the
network adaptation can be regarded as the agent’s mobility in
terms of biological application.

The present paper aims to establish a coevolution system
in a networking game, which is primarily inspired by the
model of Zimmermann and Eguiluz, but revised in some
points concerning network adaptation. After a series of nu-
merical experiments for various 2�2 game structures, we
show that this coevolution of strategy and networking is ef-
fective to dilute dilemmas such as PD, stag hunt �SH�, and
chicken, where mutual cooperation �R reciprocity� is mean-
ingful, but is ineffective for leader and hero dilemmas, where
alternating reciprocity �where a focal agent offers C and op-
ponent offers D, and they change roles in the next turn; ST
reciprocity, in other words �23�� is more beneficial than R
reciprocity.

II. MODEL

Let us presume a dynamic process, where an agent plays
games with opponents connected by his networks �links� and
evolves both his own strategy �either C or D� and the links to
maximize his individual payoff. The number of agents in the
society is N.

A. Game description

When we define respective payoffs in a 2�2 game as in
Table I, every game defined in 2�2 game space can be
expressed by �24�

P = x0 − 0.5r1 cos��

4
� , �1�

R = x0 + 0.5r1 cos��

4
� , �2�

S = x0 + r2 cos��

4
+ �� , �3�

T = x0 + r2 sin��

4
+ �� . �4�

Since x0 is independent of the relative relationships
among payoffs, a single set of two parameters r�r2 /r1 and �
�deg� is sufficient to see the entire 2�2 game world, as
shown in Fig. 1. One marvelous feature is that well-known
typical dilemma games, such as PD, chicken, SH, leader, and
hero, can be distinctly drawn and the regions in which they
occur can be illustrated. Tanimoto and Sagara �24� also show
that the dilemma in a 2�2 game can be quantified with two
game structural parameters Dg=T−R and Dr= P−S. Dg indi-
cates the static-dilemma intensity—the inclination of two
equal players to exploit each other. They call this situation
the gamble-intending dilemma �GID�. Moreover, Dr indi-
cates the static-dilemma intensity of equal players trying
never to be exploited by each other. This is called a risk-
averting dilemma �RAD�. They also showed that the actual
dilemma of a game can be explained by the game’s structural
�static elements Dg and Dr� and dynamic influences.

B. Agents

An agent makes both his strategy and network evolve to
maximize his payoff. Those two adaptation processes operate
synchronously. Each agent plays 2�2 games with all agents
connected by his links. The total payoff defines the payoff,
summing all games he plays at a certain time step. Hence,
the more links an agent has, the higher payoff he can possi-
bly earn. The average degree �average number of links� an
agent has is denoted by K.

TABLE I. Payoff matrix for a 2�2 game.
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Cooperation Defect

Ego Cooperation �C� R S

Defect �D� T P
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FIG. 1. Scene of the 2�2 game world. According to Tanimoto
and Sagara �23�, any 2�2 games can be parametrized by two game
structural parameters r and �. Any game classes including both
dilemma games such as PD, chicken, SH and so on, and even trivial
game, can be drawn schematically. Avatamsaka is a special game
that is on the border of donor-recipient game �one of the special
PDs� and trivial game.
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C. Strategy adaptation

Each agent deterministically copies the strategy �either C
or D� from the neighbor �agents connected by his links� who
obtained the biggest payoff in the previous time step. This is
called imitation dynamics.

D. Network adaptation

At the beginning of the simulation episode, agents are
connected by a random network �based on an Erdos-Renyi
graph—e.g., �25�� having an average of K links. This random
network remains for the initial 50 time steps. Thus, the
agents play games in the fixed random network during the
initial 50 time steps. After 50 steps, network adaptation
starts. Network adaptation consists of two particular proce-
dures: severing a link with one neighbor and connecting a
new link to an unknown agent. We presume two methods for
the two respective procedures. We define, here, probability
pk, which means that an agent keeps a certain link, never
severing it spontaneously.

Severing method No. 1. Each agent tries to sever a D-D
link by probability 1− pk

2. A link is never severed, unless both
agents connected by the link offer D simultaneously.
Namely, pk means the probability in which an agent keeps its
link in the next time step. An actual severing event must be a
complementary event that two agents connected each other
are trying to keep its link at the same time �=1− pk

2�.
Severing method No. 2. Each agent tries to sever not only

a D-D link but also a C-D link by probabilities 1− pk
2 �a

probability of both two agents trying to serve� and 1− pk �a
probability of one of two agents trying to serve�, respec-
tively. An agent may sever a link whenever his opponent
offers D. It seems plausible that the severing probability in
case of both agents offering D is larger than when one agent
offers D, because both agents try to sever the link in the
former case, but in the latter case, only one tries.

Connecting method No. 1. Each agent who has severed a
link creates a new link with an agent selected randomly from
the population. The new link, however, is never the same as
any existing link.

Connecting method No. 2. Each agent who has severed a
link creates a new link with an agent proportionally selected
through a roulette selection process, based on the average
degrees of respective agents. On the grounds of the similarity
to the Barabasi-Albert algorithm �16�, this method may en-
courage a power-law degree distribution, like a scale-free
network. The new link, however, can never be the same as an
existing link.

III. NUMERICAL EXPERIMENT

The assumed experimental parameters are K=8, N
=1000, pk=0.9985 �1− pk

2=0.03�, r1=1.272, and x0=0.55.
Each initial distribution of C, imposed at the beginning state
of every simulation episode, is assumed as 0.5. We vary the
game structure − 3

4����
5
4� and 0�r�2 in Eq. �1� �or Fig.

1�. The contours shown below are drawn by ensemble aver-
ages of five equilibrium trials �quasi-steady-state of the dy-
namics� for respective game structures �we had confirmed

that a five-ensemble average seems acceptable to observe the
general tendency that will be discussed in the following
text�.

As far as the assumption of parameter setting, we have
confirmed that the results below seem relatively robust, un-
less too large 1− pk

2 is assumed �too large 1− pk
2 leads to

larger cooperation fraction for Leader game area�.
One simulation episode runs until the time when the

variations of cooperation fraction and payoff per an agents
can be regarded sufficiently small after 2000 time steps,
which seems an asymptotic equilibrium.

IV. RESULTS AND DISCUSSION

Figure 2 shows �a� the cooperation fraction among N in
the case of an evolutionary network, based on severing
method No. 1 and connecting method No. 1 �we call this the
standard evolutionary network �SEN��; �b� the payoff differ-
ence between SEN and the analytical solution �the raw pay-
off of the analytical solution can be accessed at Fig. 8 of
�23��; �c� the payoff difference between SEN and the fixed
random network case; �d� the payoff difference between SEN
and the fixed scale-free network case; �e� the maximum de-
gree of the network in SEN; �f� the payoff difference be-
tween the evolutionary network based on severing method
No. 1 and connecting method No. 2 and the analytical solu-
tion; �g� the payoff difference between the evolutionary net-
work based on severing method No. 2 and connecting
method No. 1 and the analytical solution; and �h� the payoff
difference between the evolutionary network based on sever-
ing method No. 2 and connecting method No. 2 and the
analytical solution. Each payoff indicates a payoff per single
game. The analytical solution comes from the replicator dy-
namics for a 2�2 game, which means the control case with-
out any supporting cooperation mechanisms �such as game
iteration, network, memory, punishment, etc.�. Based on the
analytical solution �e.g., �26��, every 2�2 game with infinite
population size and none of supporting cooperation mecha-
nisms can be classified whether it is C dominant �trivial
game that contains no dilemma�, D dominant �PD game hav-
ing Dg and Dr at the same time�, polymorphic �chicken-type
dilemma game having Dg�, or bistable �SH-type dilemma
game having Dr�. Both fixed random and scale-free networks
indicate cases in which agents play 2�2 games in fixed
networks that are determined at the beginning of a simulation
episode. The payoff difference in �c� shows the effectiveness
of network adaptation itself, because the initial state �up to
50 time steps� of the evolutionary network case is fixed to a
random network.

Observing Figs. 2�a� and 2�b�, we notice that the proposed
coevolution system cannot solve stronger �larger r� chicken-
type dilemma games �24�, including the PD �enclosed by the
dotted line in Fig. 2�a��. However, it can solve most SH-type
dilemma games and weak chicken-type dilemmas �24� �en-
closed by the dashed line in Figs. 2�a� and 2�b��. It also
proves that, for leader and hero games �where ST reciprocity
is beneficial than R reciprocity�, coevolution obtains a
smaller payoff �shown enclosed by the dot-dashed line in
Fig. 2�b�� than the analytical solution. Hence, the coevolu-
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tion system does not support ST reciprocity.
As we confirmed, the coevolution system can support R

reciprocity by eliminating the dilemma to some extent. We
can explain this by the emerging hub agents in the case of
SEN that are produced by the coevolution system. Actually,
the higher payoff area of SEN, compared with the fixed ran-
dom network �the red area in Fig. 2�c��, is consistent with the
area in which SEN has larger maximum degree �see Fig.
2�e��. This seems consistent with what Zimmermann and
Eguiluz �19� reported—that a particular degree distribution
arises, like a scale-free network, due to the networks’ adap-
tation. Hub agents can become C agents due to the evolu-
tionary flexibility, directly produced by the strategy adapta-
tion occurring simultaneously with the network adaptation.
The cooperative hub agents that have more C agents in their
subordinate layers emerge, which creates a C hierarchy
structure, supporting R reciprocity, and leads to a higher pay-

off. Figure 3 shows one of the degree distributions of the
closed plot �because the plot indicates an ensemble average�
in Fig. 2�e� �bold line�, of which the game structure is anti-
leader ��=3� /4 and r=1.8 in Fig. 1� and that has a SH-type
dilemma. In Fig. 3, both degree distributions of the fixed
random network �thin line, the maximum degree is 19� and
the fixed scale-free network �dotted line, the maximum de-
gree is 74� are also shown. Obviously, SEN has a much
larger maximum degree than the random network, almost
that of the fixed scale-free network. Hence, SEN can enable
the power-law-like degree distribution that the scale-free net-
work has. Figure 4 shows degree distributions of both C
agents and D agents in the case of SEN of Fig. 3, and Fig. 5
indicates payoff distributions of them. Figure 6 also deals
with the case of SEN of Fig. 3, which shows payoff relations
of two connected agents by a link; one is for the relation of
the C-C link and the C-D link is another. We confirmed that
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FIG. 2. �Color online� Result of the numerical experiments �a� the cooperation fraction among N in SEN, �b� the payoff difference
between SEN and the analytical solution, �c� the payoff difference between SEN and the fixed random network, �d� the payoff difference
between SEN and the fixed scale-free network, �e� the maximum degree in the SEN network, �f� the payoff difference between the
evolutionary network based on severing method No. 1 and connecting method No. 2 and the analytical solution, �g� the payoff difference
between the evolutionary network based on severing method No. 2 and connecting method No. 1 and the analytical solution, and �h� the
payoff difference between the evolutionary network based on severing method No. 2 and connecting method No. 2, and the analytical
solution. Each payoff indicates a payoff per single game. Degree distribution of the closed plot in �e� that locates on �=3� /4 and r=1.8 is
shown in Fig. 3. Marks + and − indicate positive and negative differences, respectively.
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those results are robust by observing other degree distribu-
tions based on different random number seeds. Then, observ-
ing the results, we can notice that D agents who have fewer
links in relation to C agents can only obtain modest payoffs
featured by less deviation and less average than that of hub C
agents. This proves that the “local max” �which is derived
from the terminology of Zimmermann and Eguiluz �19�� D
agents always exploit C agents who are in a middle position
of a C chain �never be hub agents�. As the total, the system
can evolve to a sustainable cooperation, although several D
agents are still alive. Because the hub agents who steer
whether the society goes to cooperative or defective are C
agents, and D agents manage to survive to exploit C agents
who are not hubs but are in a position below the top.

Observing Fig. 2�c�, we notice two areas where the payoff
of SEN is less than the fixed random network. One is in
either hero or leader �chicken-type dilemma�, enclosed by a
dotted line in Fig. 2�c�; another is the area in antileader �SH-
type dilemma�, close to the PD border, enclosed by a dashed
line in Fig. 2�c�.

The first area can be explained by its particular game
structure. Because it satisfies 2R�S+T, in either hero or

leader, ST reciprocity is more beneficial than R reciprocity. In
a fixed random network, unintentional ST reciprocity, by
connecting a C agent with a D agent, happens to some ex-
tent. However, in SEN, this kind of situation is not allowed.
When a focal agent offers C against a D opponent obtaining
S, he might copy D strategy �T�S� from this opponent. If
so, in the next time step, this link connects a D agent with a
D agent. Network adaptation might sever the link. In this
way, the network adaptation, plus strategy adaptation, leads
this situation to R reciprocity, which leads to a smaller pay-
off.

In the second case, the game structure satisfies 2P�S
+T. Assuming an analytical solution, having no supporting
cooperation mechanisms, antileader, in this area, leads to an
all-defection state �every agent obtains P� if the initial C
distribution is 0.5. Despite a game structure that encourages
obtaining P, mutual defections become impossible, due to
network adaptation, plus strategy adaptation. Namely, when
a focal agent offers a C against a D opponent obtaining S, he
retains C �because S�T�, while a D-D link might be severed
by network adaptation. In this way, there are always a certain
number of C-D connections, instead of all “stable” D-D con-
nections.
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Figure 2�d� shows two areas where the payoff of SEN is
less than that of the fixed scale-free network. One is the area
in leader enclosed by a dotted line, and another is the area in
antileader close to the PD border, enclosed by a dashed line.
The latter area is consistent with one of the two inferior areas
discussed previously �the dashed area in Fig. 2�c��. The rea-
son for this is the same as argued previously. The reason for
the first low-payoff area can be that network adaptation can-
not make adequate hubs evolve in this particular game struc-
ture. In fact, the maximum degree in the area �Fig. 2�e�� is
less than the 74 available to the fixed scale-free network. A
lack of hub agents who have larger degrees means that net-
work adaptation cannot support R reciprocity effectively. Al-
though low-payoff areas exist, we note that there is a high-
payoff area starting at PD and stretching to parts of SH and
antileader �enclosed by the dot-dashed line in Fig. 2�d��. Hu
et al. �17� reported that, for a fixed scale-free network,
whether the maximum degree hub agent is assumed to be C
or D at the beginning of a simulation episode crucially af-
fects the following dynamics—almost determining whether
the equilibrium would be a cooperative or defective phase.
One reason the superior area stretching from PD to parts of
SH and antileader emerges is that the proposed coevolution
is effective in encouraging hub agents to become coopera-
tive. Because of its flexibility, network adaptation can sig-
nificantly help to extinguish defective hubs and enforce co-
operative hubs emerging, which can lead the system to a
stable R reciprocity. From the standpoint of Hu et al., our
result implies that coevolution, which considers simulta-
neous strategy and network adaptation, is a robust dilemma-
solving mechanism, regardless of the influence of the initial-
agent allocation that crucially affects fixed scale-free
networks.

Comparing Figs. 2�b� and 2�f� and Figs. 2�g� and 2�h�,
connecting method No. 2 provides a higher payoff than the
analytical solution in some parts of leader �enclosed by the
dotted line in Figs. 2�f� and 2�h��. As we have argued, the
proposed coevolution seems less effective for ST reciprocity.
However, adopting connecting method No. 2, instead of a

random connection, works effectively in this leader area,
even satisfying 2R�S+T. Connecting method No. 2, which
reflects an idea similar to the Barabasi-Albert algorithm,
gives a network a larger maximum degree than does SEN,
which can help more effective R reciprocity. Hence, it pro-
duces more R and less P fractions than either SEN or the
analytical solution, which can realize a higher payoff.

Meanwhile, comparing Figs. 2�b� and 2�g� and Figs. 2�f�
and 2�h�, severing method No. 2 makes the low-payoff area
in antileader, near the PD border �enclosed by the thick line
in Figs. 2�b� and 2�f�� disappear. This is because it can sever
not only a D-D link, but also a C-D link, which solves the
particular drawback in which supporting R reciprocity inevi-
tably brings S and T in a network, due to the condition of
2P�S+T.

Summing up those two features, we would say that apply-
ing both connecting method No. 2 and severing method No.
2, which was not considered in the work of Zimmermann
and Eguiluz, seems useful in providing more efficient reci-
procity for several specific game structures.

V. CONCLUSIONS

We established a revised coevolution model of strategy
and network adaptation from the original by Zimmermann
and Eguiluz. After a series of investigation for various 2
�2 game structures, we draw the following conclusions.

�i� This particular coevolution mechanism is useful for
producing R reciprocity �valid for PD, chicken, and SH� and
not significant for ST reciprocity �valid for leader and hero�.

�ii� When we consider an additional network adaptation
rule, “frequent connection to a larger degree agent,” the co-
evolution mechanism produces a higher payoff than the ana-
lytical solution in some part of leader. This is because it
fosters the emergence of hub agents having C strategy.

�iii� When we consider an additional network adaptation
rule, “sever not only a D-D link but also a C-D link,” the
coevolution mechanism overcomes the drawback of less pay-
off than the standard network adaptation in some antileader,
close to the PD border.
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